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Introduction 
• More and more  GPS data is collected from vehicles. 
• Users’ visits to PoIs can be extracted from this data.  
• These visits offer insights into the PoIs. 

 Popularity 
 Importance 
 The duration of visits 
 This information can be extracted at different spatial and temporal 

granularities. 
 The popularity of a PoI to visitors coming from a specific region. 
 The popularity of a PoI to visitors in the morning. 
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Problem Definition 
• STR – A set of GPS trajectories 
• SP – A database of PoIs in the geographical region 

covered by STR 
• Given STR and SP, the problem is to identify the visits of 

users whose trajectories are given in STR to the PoIs 
contained in SP. 
 Two subproblems: Identifying the stops in the trajectories and 

assigning the stops to PoIs 
 We focus on the second subproblem. 
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Related Work 
• Enriching trajectories with semantic information 

 SMoT and CB-SMoT annotate stops. 
 Many proposals use clustering to identify interesting and significant 

locations. 
 Battacharya et al. propose a method based on bearing change, speed 

and acceleration to identify interesting places. 
• Extracting visited PoIs and activities from GPS trajectories 

 Nishida et al. propose a probabilistic PoI identification method . 
 Semi-supervised 
 A hierarchical Bayesian model that makes use of personal preferences, 

stay locations, and stay times for each PoI category 
 Bhattacharya et al. propose a two-phase algorithm for assignment. 

 Kernel density estimation on the latitude, longitude, and time dimensions 
 Line segment intersection based approach to rank the possible PoIs 
 Requires a database containing the polygon information for each PoI 

 Distance based assignment approaches 
 Assignment of the stop to the closest PoI 
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Visited PoI Extraction (VPE) Method  
• Bayesian network with 

distance based filtering to 
determine the category of 
the visited PoI 

• To learn the network, VPE includes a method to construct labeled 
assignment data on a subset of stops. 

• In the assignment phase, the set of possible categories is the 
categories of PoIs within a threshold distance from the input stop. 

• The joint probability of a category and an input stop is computed, and 
the category with the maximum probability is the output. 

• If there is only one PoI of this category, the stop is assigned to the PoI. 
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VPE / Building Bayesian Network 
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VPE / Building Bayesian Network 
• Stop location extraction 

 Ignition mode information given by the GPS device is used. 
 If a user stops longer than a duration parameter, it is considered as 

a stop. 
 A distance threshold parameter is also introduced to make sure 

that GPS readings are correct. 

• Determining the home/work locations of users 
 Density based clustering approach 

 Clustering user’s stops with DBSCAN 
 If the average stay duration exceeds the input threshold (Δhw), mark all 

stops in the cluster as home/work stops. 
 Required in order to eliminate the visits to home and work 

locations 
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VPE / Building Bayesian Network 
• Labeled dataset construction 

 A labeled dataset is needed to learn the Bayesian network. 
 This is generally not available for vehicle trajectories. 
 Distance based assignment (DBA) is used to generate labeled 

stops. 
 Takes a stop location and a distance threshold (adth)  
 Assigns the stop location to the closest PoI if there is only one PoI 

inside the circular region centered at the stop location and with radius 
adth 
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VPE / Building Bayesian Network 
• Learning the Bayesian Network 

 Four nodes: time index, day index, stay duration, and PoI category 
 The structure of the Bayesian Network is determined according to 

an initial analysis on the labeled dataset 
 
 
 
 
 
 
 
 

 This step forms conditional probability tables for each node with 
respect to the labeled dataset. 

Time Index Day Index Category Probability 

8 1 University 0.12 

8 2 University 0.23 

... … … … 
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VPE / Building Bayesian Network 
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VPE / Assignment 
• Distance based filtering 

 The set of possible categories is determined according to the 
distance factor (df) and the adth parameter. 

 

 
 
 
 
 
 
 

• The joint probability of the category and the stop location 
is computed using the Bayesian network 

𝑃𝑃 𝑐𝑐𝑐𝑐𝑐𝑐, 𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑, 𝑠𝑠𝑠𝑠 = 𝑃𝑃 𝑑𝑑𝑑𝑑 ∙ 𝑃𝑃 𝑡𝑡𝑡𝑡 ∙ 𝑃𝑃 𝑐𝑐𝑐𝑐𝑐𝑐  𝑑𝑑𝑑𝑑, 𝑡𝑡𝑡𝑡) ∙ 𝑃𝑃 𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐) 

adth 
df = 2 Stop 

location 

p1 

p2 

p3 

p4 

p5 

• The category of p1 and p3 is 
restaurant. 

• The category of p2 is school. 
• The category of p4 is 

supermarket. 
• The category of p5 is shoe store. 
• So the set of possible categories 

is {restaurant, school, 
supermarket, shoe store}. 
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VPE / Assignment 

• The category with the maximum probability is determined. 
• If there is only one PoI of this category in the set of 

possible PoIs, the stop is assigned to this PoI. 
 
 

adth 

df = 2 Stop 
location 

p1 

p2 

p3 

p4 

p5 

• Assume that the category with 
maximum probability is 
supermarket. 

• Then the stop location is 
assigned to p4. 

• If the category was restaurant, it 
wouldn’t be possible to assign 
the stop since there are two 
nearby restaurants (p1 and p3). 
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Experimental Evaluation / Setup 
• We used default values for stop location extraction and 

home/work stop location inference parameters. 
 Our work focuses on the assignment of stop locations. 

• GPS data 
 354 cars during the period 01/03/2014 – 31/12/2014 
 Contains around 0.4 billion records 
 The majority of the records are located in or around Aalborg, 

Denmark. 
 With the default parameters, we obtain around 350,000 stops, out 

of which around 130,000 are home/work stops. 

• PoI dataset 
 Contains around 10,000 PoIs of 88 categories 
 Collected from  Google Places 
 All of the PoIs are located in or around Aalborg, Denmark. 
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Experimental Evaluation / Setup 
• Ground truth dataset construction for the evaluation of our 

assignment method 
 Labeled dataset construction as explained before with adth = 100 

meters 
 Around 37,000 assignments 
 Top-5 categories are supermarket, store, school, restaurant and 

lodging. 
• 10-fold cross validation with the ground truth dataset 
• We have more than one possible PoI for each stop 

location in our test set. 
 We extend the surrounding area with distance factor (df) 

parameter. 
 If there is more than one PoI in this region, we add the stop 

location to our test set. 
 Otherwise, the stop location is not included. 
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Experimental Evaluation / Setup 
• We modify the algorithm to return a ranked list of 

categories as output to evaluate the performance. 
• We report the following metrics. 

 Precision at n (p@n)  
 Percentage of stops whose correct category is included in the top-n of 

the output 
 Mean reciprocal rank (mrr) 

 The average position of the correct category in the output 
 Number of possible categories (npc) 
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Experimental Evaluation / Results 

• Precision decreases when 
adth increases 

• The number of possible 
categories increases 

• VPE achieves a p@3 value 
around 0.8 and a mean 
reciprocal value of 2. 

• DBF has a positive effect on 
the precision. 
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Experimental Evaluation / Results 

• The time period of a time slot 
affects the model’s 
performance. 

• The best performance is 
achieved when the time slot is 
30 minutes or 1 hour. 

• Increasing the time period 
decreases the model’s ability to 
distinguish PoI categories. 

18 



Experimental Evaluation / Results 

• The p@n decreases when the 
distance factor increases. 

• The number of possible 
categories increases 
steeply. 

• The increase in the number of 
possible categories is steeper 
than the increase in the mean 
reciprocal rank. 
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Experimental Evaluation / Results 

• The stay duration distribution 
obtained from the assignments 
(top) is quite similar to the one 
obtained from the labeled 
assignment construction 
(bottom). 

• The Bayesian network is able 
to model the relationship 
between the categories and the 
stay duration values. 
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Conclusion 
• We propose a Visited PoI Extraction method. 

 Employs a Bayesian network to represent the relationship between 
the temporal attributes of a stop and the category of the visited PoI 

 Includes a method to build a labeled dataset 

• The proposed method is capable of detecting the category 
of the visited PoI, and it achieves a p@3 of 0.8. 

• Future work 
 Combine different data sources like check-ins with GPS data 
 Use of assignment methods for evaluating ranking functions in 

spatial keyword queries 
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