Synthesis of Partial Rankings of Points of Interest Using Crowdsourcing

Ilkcan Keles Simonas Saltenis Christian S. Jensen

Center for Data-intensive Systems

Outline

- Introduction
- Problem Definition
- Related Work
 - Crowdsourcing
 - Rank Aggregation
- PointRank
 - Preliminaries
 - Overview
 - Determining the Next Question
 - Processing the Question
- Experimental Results
- Conclusion

Introduction

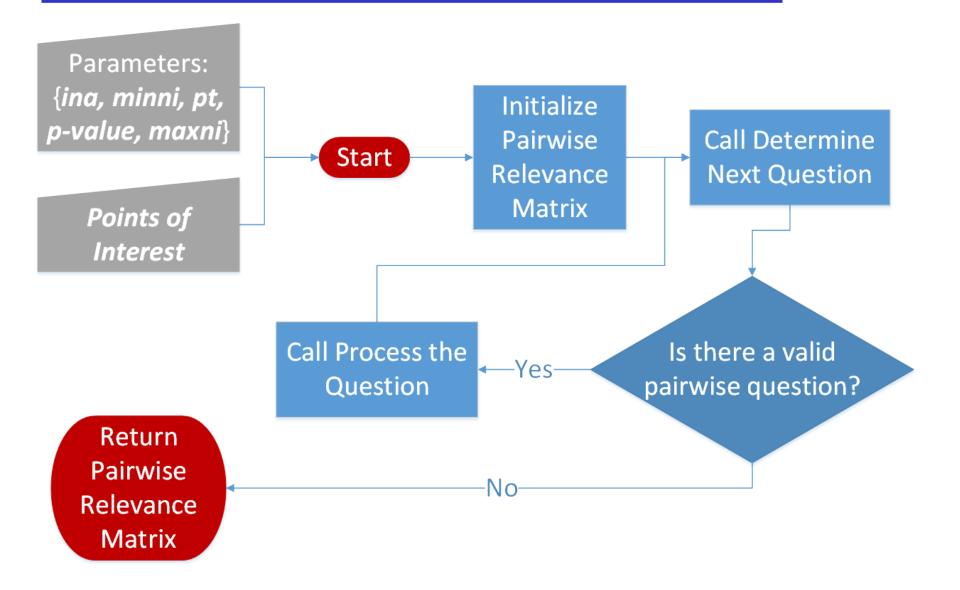
- Top-k Spatial Keyword Queries
 - Given
 - User Location latitude, longitude pair
 - Keywords
 - k the size of the result list
 - Return
 - A ranked list of *k* Pols wrt a ranking function
- Motivation
 - No existing work on the quality of the ranking functions
 - No way to compare the ranking functions
 - No mathematical definition of the best ranking
 - Best ranking depends on preference of the users
 - A methodology to construct the best ranking is needed

Problem Definition

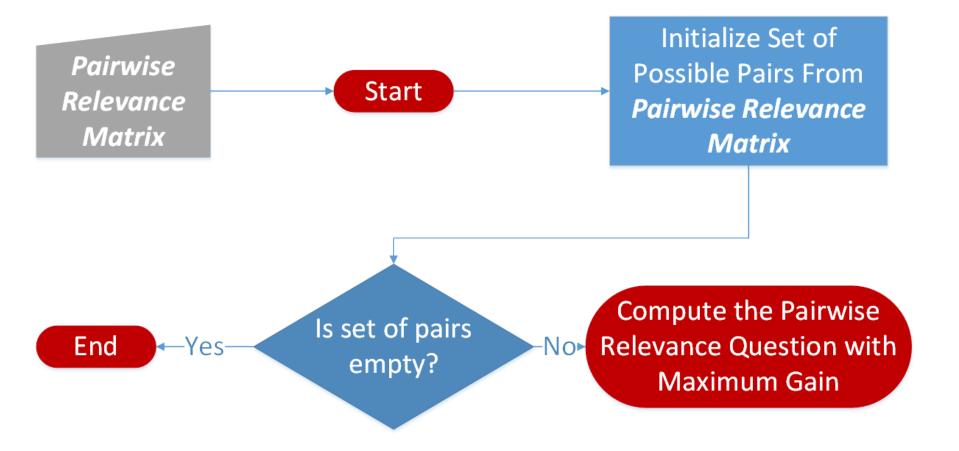
- D the set of Pols returned in response to a spatial keyword query.
- Pairwise relevance relation < on D
 - Irreflexive
 - Transitive
 - Asymmetric
- Each element $p_i < p_i$ is called as pairwise relevance.
- If for each pair (p_i, p_j), p_i < p_j or p_j < p_i then it is a total order.
- The problem is to design a model
 - To construct a pairwise relevance relation < on D via crowdsourcing.
- The synthesized relation < should be
 - Similar to a ground-truth relation
 - Synthesized in an efficient manner.

PointRank / Preliminaries

- Pairwise relevance question
 - A pair of Pols
 - Asks which of the two Pols are relevant to the query
- Assignment
 - Assignment of a pairwise relevance question to a worker
- Three possible answers
 - First Pol is more relevant
 - Second Pol is more relevant
 - They are incomparable
- Consensus
 - If there is not a significant change in the answers in two iterations
- Chi-square test is used to check the significance of the change
 - P-value is the probability that the change is due to chance

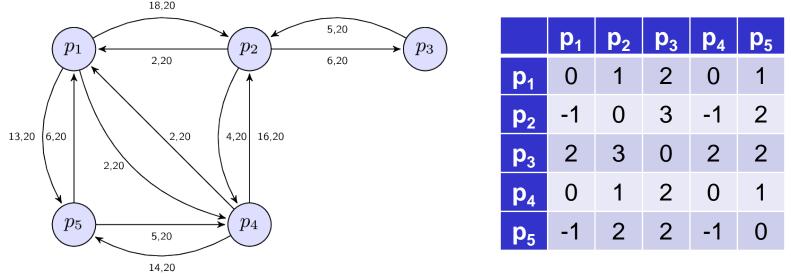

PointRank / Overview

- Edge weighted directed graph
 - To store the answers of the workers
- Pairwise Relevance Matrix (PRM)
 - To store the output of the algorithm (pairwise relevance relation)
- A cell in PRM *M* can have one of the possible values:
 - M[i,j] = 1 encoding $p_i < p_j$
 - M[i,j] = 0 encoding that p_i and p_j are incomparable
 - M[i,j] = -1 encoding $p_j < p_i$
 - M[i,j] = 2 encoding that (p_i, p_j) is not processed.
 - M[i,j] = 3 encoding that the algorithm cannot decide about (p_i, p_j)
- *M* has the following properties:
 - Transitivity If M[i,j] = 1 and M[j,k] = 1 then M[i,k] = 1.
 - Possibility of Inconsistencies

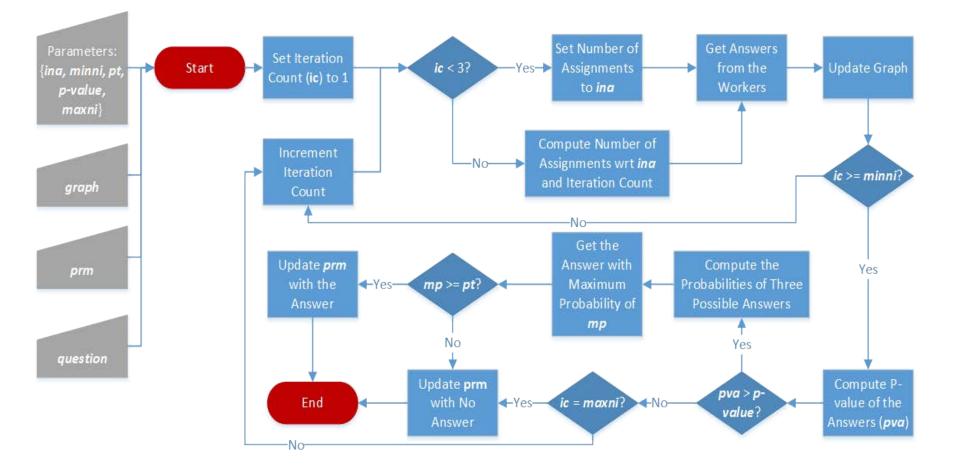

PointRank / Overview

- Parameters
 - pois: The list of Pols to be ranked
 - ina: Initial number of assignments for each pairwise question
 - minni: Minimum number of iterations to check for consensus
 - *maxni*: Maximum number of iterations for each pairwise question
 - *pvalue*: Maximum p-value to consider the changes significant
 - *pt*: Probability threshold to decide about the answer of pairwise relevance questions
- Two phases:
 - Determining the Next Question
 - Processing the Question

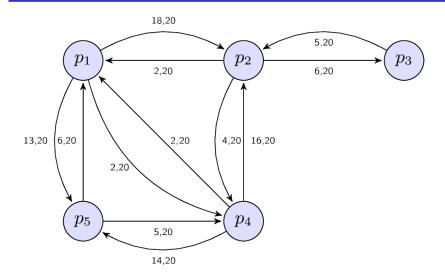
PointRank / Overview



PointRank / Determine the Next Question

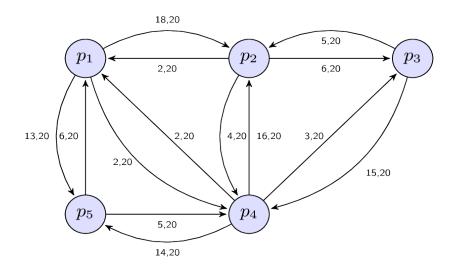

PointRank / Gain Definition

- Gain is defined as the number of pairwise relevance questions that may be eliminated by asking the question.
- $D = \{p_1, p_2, p_3, p_4, p_5\}$



- (p₃, p₄)
 - $p_3 < p_4$: From this answer, $p_3 < p_2$ and $p_3 < p_5$ can be inferred.
 - $p_4 < p_3$: No new pairwise relevance can be inferred.
 - Since the gain is defined as the average, the gain of this question is 1.

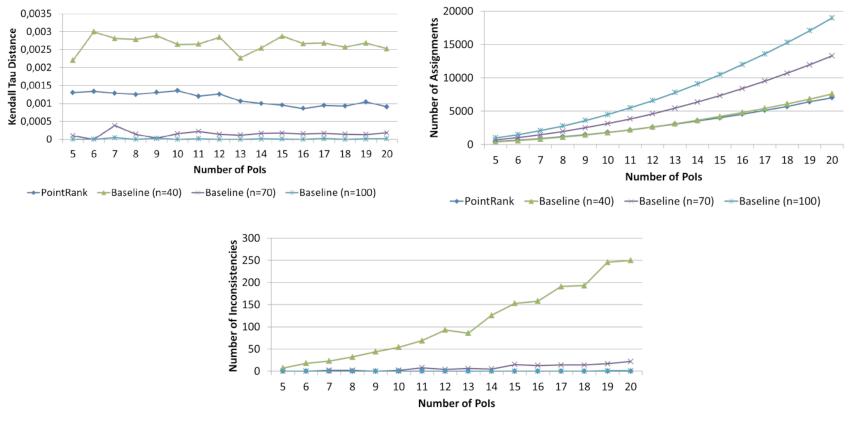
PointRank / Process the Question



PointRank / Example (Cont'd)

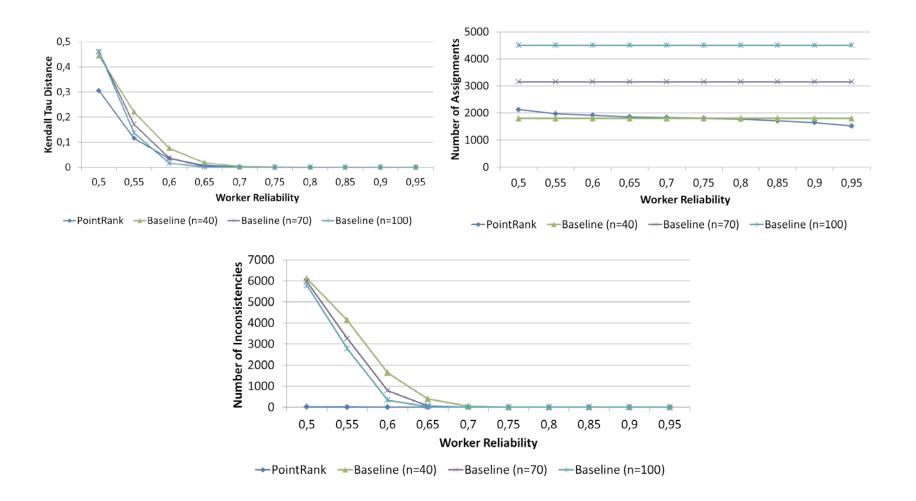
	p ₁	p ₂	p ₃	p ₄	p ₅
p ₁	0	1	2	0	1
p ₂	-1	0	3	-1	2
p ₃	2	3	0	2	2
p ₄	0	1	2	0	1
p ₅	-1	2	2	-1	0

- Processing (p₃, p₄)
 - Parameters: *ina* = 5, *minni* = 3, *pt* = 0.6



	p ₁	p ₂	p ₃	p ₄	p ₅
p ₁	0	1	2	0	1
p ₂	-1	0	-1	-1	2
p ₃	2	1	0	1	1
p ₄	0	1	-1	0	1
р ₅	-1	2	-1	-1	0

PointRank / Baseline Comparison


- Generated data
 - Total rankings
 - Partial rankings
- Baseline Algorithm
 - Majority Voting
 - Creates a fixed number of assignments about a question (*n*)
 - Determines the answer wrt majority
 - *n* = 40, 70 and 100
- Metrics
 - Kendall Tau Distance
 - Number of Assignments
 - Number of Inconsistencies
- Two main factors
 - Number of Places
 - Worker Reliability

PointRank / Baseline Comparison

→ PointRank → Baseline (n=40) → Baseline (n=70) → Baseline (n=100)

PointRank / Baseline Comparison

Conclusion

- We propose PointRank model
 - Synthesizes ranking of Pols through crowdsourcing
 - Uses pairwise relevance questions
 - Is a step towards evaluation of ranking functions
- Evaluation methodology with synthetic data
- PointRank produces better results than an approach based on majority voting.