Extracting Rankings for Spatial Keyword Queries from GPS Data

Ilkcan Keles Christian S. Jensen

Simonas Saltenis

Aalborg University

Center for Data-intensive Systems

Outline

- Introduction
- Motivation
- Problem Definition
- Proposed Method
 - Overview
 - Model building phase
 - Ranking building phase
- Experimental Evaluation
- Conclusion

Introduction

- Pol-related and region-related attributes can be used in the ranking function.
- A good ranking function should be able to model the user preferences.
 - Important since it effects the user satisfaction in the location based services.

Motivation

- Lack of studies on the quality of ranking functions
- Being able to evaluate ranking functions is crucial.
 - Important step towards increasing user satisfaction with location based services
 - Difficult since there is no ground-truth ranking to be compared against
- A few studies propose crowdsourcing based methods to synthesize rankings.
 - Expensive
 - Time consuming
 - Difficult to recruit workers who know about the spatial region of the query

Problem Definition

- S_G A set of GPS records
- S_P A database of Pols in the geographical region covered by S_G
- Given a top-k spatial keyword query, the problem is constructing a top-k ranking of Pols in S_P using S_G.

Proposed Method

- Intuitively, we assume that each trip is the result of a spatial keyword query.
- Each trip to a Pol is considered as a vote for the Pol for the source location of the trip.

Two phases: Model building and Ranking building

Model Building

- Takes a set of GPS records, S_G, and a set of Pols, S_P, and outputs a regular grid
- Each grid cell contains two values for each Pol
 - The number of trips from the cell to the Pol (*nt*)
 - The number of distinct users with a trip to the Pol starting from the cell (*nd*)

Model Building

- Stop Extraction
 - Ignition mode together with a duration parameter
 - Distance threshold parameter to make sure that GPS readings are correct
- Determining Home/Work Locations
 - DBSCAN based approach
 - If the average duration of stay in a cluster exceeds a predefined threshold, we decide that the cluster is the user's home/work location

- Distance Based Assignment (DBA)
 - Two parameters: Distance threshold (ad_{th}) and limit (lim)

- $ad_{th} = 50 m$, lim = 5
 - The stop is assigned to p₁.

•
$$ad_{th} = 100 m$$
, $lim = 5$

• The stop is not assigned.

- Temporal Pattern Enhanced Assignment (TPEA)
 - Utilizes temporal patterns of the users to assign unassigned stops
 - For each user, we cluster the user's stops.
 - For each cluster:
 - If the cluster contains stops assigned by DBA, build visit-pattern matrices
 - A visit-pattern matrix is a 2D matrix where
 - First dimension corresponds to day information
 - Second dimension corresponds to time of the day information
 - The value in the cell is the number of Pols visited by the user during the time period
 - Utilize these matrices to assign the unassigned stops in the cluster

00:00	06:00	12:00	18:00
06:00	12:00	18:00	00:00
0	0	3	

	00:00 06:00	06:00 12:00	12:00 18:00	18:00 00:00
Weekdays	0	0	2	0
Weekends	0	0	1	0

	00:00 06:00	06:00 12:00	12:00 18:00	18:00 00:00
Wednesday	0	0		0

- Using the assignments, all trips to Pols are extracted.
- We utilize a grid to model the spatial region.
- For each cell in this grid, two values for each Pol are computed from the trips.
 - The number of trips from the cell to the Pol
 - The number of distinct users making these trips

- After the initialization, many Pols have sparse grids
 - This reduces the number of spatial keyword queries that we can construct rankings for
- If a Pol is of interest to drivers leaving from a cell, it might also be of interest to drivers leaving from nearby cells.
- We propose a smoothing algorithm based on personalized PageRank.
 - PageRank is proposed for web graphs.
 - It assigns a page rank value to a website.
 - The relative importance of it within a set
 - A webpage is considered important if other important webpages link to it.
 - Personalized PageRank utilizes a distribution based on personal preferences instead of the uniform teleportation probability.

$$c_1 - 0$$
 $c_2 - 10$
 $c_3 - 2$
 $c_4 - 2$
 $c_5 - 1$
 $c_6 - 0$

0.126	0.277	0.141
0.135	0.201	0.120

1.890	4.155	2.115
2.025	3.015	1.800

Ranking Building

- Find the cell containing the query location
- Filter the Pols that have a value for this cell according to the query keywords
- Rank the remaining Pols $score(p) = \beta \times nt + (1 - \beta) \times nd$
- Output the top-k Pols

GPS data

- 354 cars during the period 01/03/2014 31/12/2014
- Contains around 0.4 billion records
- The majority of the records are located in or around Aalborg, Denmark.
- With the default parameters, we obtain around 350,000 stops, out of which around 130,000 are home/work stops.

Pol data

- Contains around 10,000 Pols in 88 categories
- Collected from Google Places
- All of the Pols are located in or around Aalborg, Denmark.

- "Ground-truth" data
 - The home/work locations extracted from GPS data are utilized.
 - A home/work Pol is added to the set of Pols.
 - All Pols in the set of Pols are used in the experiment.
 - The ground-truth assignments are home/work stops assigned to the corresponding home/work Pols.
 - No stops are assigned to a regular Pol
- Baseline algorithm is the closest assignment (CA) method.

- We report precision and recall.
 - True positives: Home/work stops assigned to correct home/work Pols
 - False positives: Non-home/work stops assigned to home/work Pols
 - False negatives: Home/work stops assigned to incorrect Pols or not assigned to any Pols

- To observe the effect of smoothing
 - We compare the top-10 Pols before and after smoothing.
 - We report the Kendall tau distance between these rankings.
- To observe the effect of weighting parameter (β)
 - Top-k queries with k = 10
 - The set of query keywords = {restaurant, supermarket, store}
 - The set of query locations consists of centers of the grid cells that have at least 10 Pols for the given keyword.
 - We report the average Kendall tau distance between the rankings produced by different β values.

- The distances between rankings produced with different β values are less than 0.2.
- The proposed model to extract output rankings is not overly sensitive to the weighting parameter.

Conclusion

- We propose a model based on GPS data to extract rankings for spatial keyword queries.
- We propose a novel stop assignment algorithm that uses
 - Distances between stops and Pols
 - Temporal visit patterns of the users
- We propose a PageRank-based smoothing algorithm to extend the geographical coverage of the model.
- Experimental evaluation shows that
 - Stop assignment algorithm has a precision around 0.93.
 - The distortion on the original data caused by smoothing is quite low.
 - Ranking building has low sensitivity to the weighting parameter.

Future Work

- Using the proposed model for ranking function evaluation for spatial keyword queries
- Combine different data sources like check-ins with GPS data